1.Eureka注册中心
首先我们来解决第一问题,服务的管理。
问题分析
在刚才的案例中,user-service对外提供服务,需要对外暴露自己的地址。而consumer(调用者)需要记录服务提供者的地址。将来地址出现变更,还需要及时更新。这在服务较少的时候并不觉得有什么,但是在现在日益复杂的互联网环境,一个项目肯定会拆分出十几,甚至数十个微服务。此时如果还人为管理地址,不仅开发困难,将来测试、发布上线都会非常麻烦,这与DevOps的思想是背道而驰的。
网约车
这就好比是 网约车出现以前,人们出门叫车只能叫出租车。一些私家车想做出租却没有资格,被称为黑车。而很多人想要约车,但是无奈出租车太少,不方便。私家车很多却不敢拦,而且满大街的车,谁知道哪个才是愿意载人的。一个想要,一个愿意给,就是缺少引子,缺乏管理啊。
此时滴滴这样的网约车平台出现了,所有想载客的私家车全部到滴滴注册,记录你的车型(服务类型),身份信息(联系方式)。这样提供服务的私家车,在滴滴那里都能找到,一目了然。
此时要叫车的人,只需要打开APP,输入你的目的地,选择车型(服务类型),滴滴自动安排一个符合需求的车到你面前,为你服务,完美!
Eureka做什么?
Eureka就好比是滴滴,负责管理、记录服务提供者的信息。服务调用者无需自己寻找服务,而是把自己的需求告诉Eureka,然后Eureka会把符合你需求的服务告诉你。
同时,服务提供方与Eureka之间通过**“心跳”**机制进行监控,当某个服务提供方出现问题,Eureka自然会把它从服务列表中剔除。
这就实现了服务的自动注册、发现、状态监控。
基本架构:
接下来我们创建一个项目,启动一个EurekaServer:
依然使用spring提供的快速搭建工具:
选择依赖:
完整的Pom文件:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.leyou.demo</groupId>
<artifactId>eureka-demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>eureka-demo</name>
<description>Demo project for Spring Boot</description>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.1.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<java.version>1.8</java.version>
<!-- SpringCloud版本,是最新的F系列 -->
<spring-cloud.version>Finchley.RC1</spring-cloud.version>
</properties>
<dependencies>
<!-- Eureka服务端 -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<!-- SpringCloud依赖,一定要放到dependencyManagement中,起到管理版本的作用即可 -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${spring-cloud.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
</project>
编写启动类:
@SpringBootApplication
@EnableEurekaServer // 声明这个应用是一个EurekaServer
public class EurekaDemoApplication {
public static void main(String[] args) {
SpringApplication.run(EurekaDemoApplication.class, args);
}
}
编写配置:
server:
port: 10086 # 端口
spring:
application:
name: eureka-server # 会在Eureka中显示,作为微服务名称注入到容器
eureka:
client:
register-with-eureka: false # 是否注册自己的信息到EurekaServer,默认是true
fetch-registry: false # 是否拉取其它服务的信息,默认是true
service-url: # EurekaServer的地址,现在是自己的地址,如果是集群,需要加上其它Server的地址。
defaultZone: http://127.0.0.1:${server.port}/eureka
启动服务,并访问:http://127.0.0.1:10086/eureka
注册服务,就是在服务上添加Eureka的客户端依赖,客户端代码会自动把服务注册到EurekaServer中。
我们在user-service-demo中添加Eureka客户端依赖:
先添加SpringCloud依赖:
<!-- SpringCloud的依赖 -->
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Finchley.RC1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<!-- Spring的仓库地址 -->
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
然后是Eureka客户端:
<!-- Eureka客户端 -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
在启动类上开启Eureka客户端功能
通过添加**@EnableDiscoveryClient**来开启Eureka客户端功能
@SpringBootApplication
@EnableDiscoveryClient // 开启EurekaClient功能
public class UserServiceDemoApplication {
public static void main(String[] args) {
SpringApplication.run(UserServiceDemoApplication.class, args);
}
}
编写配置
server:
port: 8081
spring:
datasource:
url: jdbc:mysql://localhost:3306/mydb01
username: root
password: 123
hikari:
maximum-pool-size: 20
minimum-idle: 10
application:
name: user-service # 应用名称
mybatis:
type-aliases-package: com.leyou.userservice.pojo
eureka:
client:
service-url: # EurekaServer地址
defaultZone: http://127.0.0.1:10086/eureka
instance:
prefer-ip-address: true # 当调用getHostname获取实例的hostname时,返回ip而不是host名称
ip-address: 127.0.0.1 # 指定自己的ip信息,不指定的话会自己寻找
注意:
我们发现user-service服务已经注册成功了
接下来我们修改consumer-demo,尝试从EurekaServer获取服务。
方法与消费者类似,只需要在项目中添加EurekaClient依赖,就可以通过服务名称来获取信息了!
1)添加依赖:
先添加SpringCloud依赖:
<!-- SpringCloud的依赖 -->
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Finchley.RC1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<!-- Spring的仓库地址 -->
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
然后是Eureka客户端:
<!-- Eureka客户端 -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
2)在启动类开启Eureka客户端
@SpringBootApplication
@EnableDiscoveryClient // 开启Eureka客户端
public class UserConsumerDemoApplication {
@Bean
public RestTemplate restTemplate() {
return new RestTemplate(new OkHttp3ClientHttpRequestFactory());
}
public static void main(String[] args) {
SpringApplication.run(UserConsumerDemoApplication.class, args);
}
}
3)修改配置:
server:
port: 8080
spring:
application:
name: consumer # 应用名称
eureka:
client:
service-url: # EurekaServer地址
defaultZone: http://127.0.0.1:10086/eureka
instance:
prefer-ip-address: true # 当其它服务获取地址时提供ip而不是hostname
ip-address: 127.0.0.1 # 指定自己的ip信息,不指定的话会自己寻找
4)修改代码,用DiscoveryClient类的方法,根据服务名称,获取服务实例:
@Service
public class UserService {
@Autowired
private RestTemplate restTemplate;
@Autowired
private DiscoveryClient discoveryClient;// Eureka客户端,可以获取到服务实例信息
public List<User> queryUserByIds(List<Long> ids) {
List<User> users = new ArrayList<>();
// String baseUrl = "http://localhost:8081/user/";
// 根据服务名称,获取服务实例
List<ServiceInstance> instances = discoveryClient.getInstances("user-service");
// 因为只有一个UserService,因此我们直接get(0)获取
ServiceInstance instance = instances.get(0);
// 获取ip和端口信息
String baseUrl = "http://"+instance.getHost() + ":" + instance.getPort()+"/user/";
ids.forEach(id -> {
// 我们测试多次查询,
users.add(this.restTemplate.getForObject(baseUrl + id, User.class));
// 每次间隔500毫秒
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
return users;
}
}
5)Debug跟踪运行:
生成的URL:
访问结果:
接下来我们详细讲解Eureka的原理及配置。
Eureka架构中的三个核心角色:
服务注册中心
Eureka的服务端应用,提供服务注册和发现功能,就是刚刚我们建立的eureka-demo
服务提供者
提供服务的应用,可以是SpringBoot应用,也可以是其它任意技术实现,只要对外提供的是Rest风格服务即可。本例中就是我们实现的user-service-demo
服务消费者
消费应用从注册中心获取服务列表,从而得知每个服务方的信息,知道去哪里调用服务方。本例中就是我们实现的consumer-demo
Eureka Server即服务的注册中心,在刚才的案例中,我们只有一个EurekaServer,事实上EurekaServer也可以是一个集群,形成高可用的Eureka中心。
服务同步
多个Eureka Server之间也会互相注册为服务,当服务提供者注册到Eureka Server集群中的某个节点时,该节点会把服务的信息同步给集群中的每个节点,从而实现数据同步。因此,无论客户端访问到Eureka Server集群中的任意一个节点,都可以获取到完整的服务列表信息。
动手搭建高可用的EurekaServer
我们假设要搭建两条EurekaServer的集群,端口分别为:10086和10087
1)我们修改原来的EurekaServer配置:
server:
port: 10086 # 端口
spring:
application:
name: eureka-server # 应用名称,会在Eureka中显示
eureka:
client:
service-url: # 配置其他Eureka服务的地址,而不是自己,比如10087
defaultZone: http://127.0.0.1:10087/eureka
所谓的高可用注册中心,其实就是把EurekaServer自己也作为一个服务进行注册,这样多个EurekaServer之间就能互相发现对方,从而形成集群。因此我们做了以下修改:
2)另外一台配置恰好相反:
server:
port: 10087 # 端口
spring:
application:
name: eureka-server # 应用名称,会在Eureka中显示
eureka:
client:
service-url: # 配置其他Eureka服务的地址,而不是自己,比如10087
defaultZone: http://127.0.0.1:10086/eureka
注意:idea中一个应用不能启动两次,我们需要重新配置一个启动器:
然后启动即可。
3)启动测试:
4)客户端注册服务到集群
因为EurekaServer不止一个,因此注册服务的时候,service-url参数需要变化:
eureka:
client:
service-url: # EurekaServer地址,多个地址以','隔开
defaultZone: http://127.0.0.1:10086/eureka,http://127.0.0.1:10087/eureka
服务提供者要向EurekaServer注册服务,并且完成服务续约等工作。
服务注册
服务提供者在启动时,会检测配置属性中的:eureka.client.register-with-erueka=true参数是否正确,事实上默认就是true。如果值确实为true,则会向EurekaServer发起一个Rest请求,并携带自己的元数据信息,Eureka Server会把这些信息保存到一个双层Map结构中。第一层Map的Key就是服务名称,第二层Map的key是服务的实例id。
服务续约
在注册服务完成以后,服务提供者会维持一个心跳(定时向EurekaServer发起Rest请求),告诉EurekaServer:“我还活着”。这个我们称为服务的续约(renew);
有两个重要参数可以修改服务续约的行为:
eureka:
instance:
lease-expiration-duration-in-seconds: 90
lease-renewal-interval-in-seconds: 30
也就是说,默认情况下每个30秒服务会向注册中心发送一次心跳,证明自己还活着。如果超过90秒没有发送心跳,EurekaServer就会认为该服务宕机,会从服务列表中移除,这两个值在生产环境不要修改,默认即可。
但是在开发时,这个值有点太长了,经常我们关掉一个服务,会发现Eureka依然认为服务在活着。所以我们在开发阶段可以适当调小。
eureka:
instance:
lease-expiration-duration-in-seconds: 10 # 10秒即过期
lease-renewal-interval-in-seconds: 5 # 5秒一次心跳
实例id
先来看一下服务状态信息:
在Eureka监控页面,查看服务注册信息:
在status一列中,显示以下信息:
我们可以通过instance-id属性来修改它的构成:
eureka:
instance:
instance-id: ${spring.application.name}:${server.port}
重启服务再试试看:
获取服务列表
当服务消费者启动是,会检测eureka.client.fetch-registry=true参数的值,如果为true,则会从Eureka Server服务的列表只读备份,然后缓存在本地。并且每隔30秒会重新获取并更新数据。我们可以通过下面的参数来修改:
eureka:
client:
registry-fetch-interval-seconds: 5
生产环境中,我们不需要修改这个值。
但是为了开发环境下,能够快速得到服务的最新状态,我们可以将其设置小一点。
失效剔除
有些时候,我们的服务提供方并不一定会正常下线,可能因为内存溢出、网络故障等原因导致服务无法正常工作。Eureka Server需要将这样的服务剔除出服务列表。因此它会开启一个定时任务,每隔60秒对所有失效的服务(超过90秒未响应)进行剔除。
可以通过eureka.server.eviction-interval-timer-in-ms参数对其进行修改,单位是毫秒,生成环境不要修改。
这个会对我们开发带来极大的不便,你对服务重启,隔了60秒Eureka才反应过来。开发阶段可以适当调整,比如10S
自我保护
我们关停一个服务,就会在Eureka面板看到一条警告:
这是触发了Eureka的自我保护机制。当一个服务未按时进行心跳续约时,Eureka会统计最近15分钟心跳失败的服务实例的比例是否超过了85%。在生产环境下,因为网络延迟等原因,心跳失败实例的比例很有可能超标,但是此时就把服务剔除列表并不妥当,因为服务可能没有宕机。Eureka就会把当前实例的注册信息保护起来,不予剔除。生产环境下这很有效,保证了大多数服务依然可用。
但是这给我们的开发带来了麻烦, 因此开发阶段我们都会关闭自我保护模式:
eureka:
server:
enable-self-preservation: false # 关闭自我保护模式(缺省为打开)
eviction-interval-timer-in-ms: 1000 # 扫描失效服务的间隔时间(缺省为60*1000ms)
在刚才的案例中,我们启动了一个user-service,然后通过DiscoveryClient来获取服务实例信息,然后获取ip和端口来访问。
但是实际环境中,我们往往会开启很多个user-service的集群。此时我们获取的服务列表中就会有多个,到底该访问哪一个呢?
一般这种情况下我们就需要编写负载均衡算法,在多个实例列表中进行选择。
不过Eureka中已经帮我们集成了负载均衡组件:Ribbon,简单修改代码即可使用。
什么是Ribbon:
接下来,我们就来使用Ribbon实现负载均衡。
首先我们启动两个user-service实例,一个8081,一个8082。
Eureka监控面板:
因为Eureka中已经集成了Ribbon,所以我们无需引入新的依赖。直接修改代码:
在RestTemplate的配置方法上添加**@LoadBalanced**注解:
@Bean
@LoadBalanced
public RestTemplate restTemplate() {
return new RestTemplate(new OkHttp3ClientHttpRequestFactory());
}
修改调用方式,不再手动获取ip和端口,而是直接通过服务名称调用:
@Service
public class UserService {
@Autowired
private RestTemplate restTemplate;
@Autowired
private DiscoveryClient discoveryClient;
public List<User> queryUserByIds(List<Long> ids) {
List<User> users = new ArrayList<>();
// 地址直接写服务名称即可
String baseUrl = "http://user-service/user/";
ids.forEach(id -> {
// 我们测试多次查询,
users.add(this.restTemplate.getForObject(baseUrl + id, User.class));
// 每次间隔500毫秒
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
return users;
}
}
访问页面,查看结果:
完美!
为什么我们只输入了service名称就可以访问了呢?之前还要获取ip和端口。
显然有人帮我们根据service名称,获取到了服务实例的ip和端口。它就是LoadBalancerInterceptor
我们进行源码跟踪:
继续跟入execute方法:发现获取了8082端口的服务
再跟下一次,发现获取的是8081:
Ribbon默认的负载均衡策略是简单的轮询,我们可以测试一下:
编写测试类,在刚才的源码中我们看到拦截中是使用RibbonLoadBalanceClient来进行负载均衡的,其中有一个choose方法,是这样介绍的:
现在这个就是负载均衡获取实例的方法。
我们对注入这个类的对象,然后对其测试:
@RunWith(SpringRunner.class)
@SpringBootTest(classes = UserConsumerDemoApplication.class)
public class LoadBalanceTest {
@Autowired
RibbonLoadBalancerClient client;
@Test
public void test(){
for (int i = 0; i < 100; i++) {
ServiceInstance instance = this.client.choose("user-service");
System.out.println(instance.getHost() + ":" + instance.getPort());
}
}
}
结果:
符合了我们的预期推测,确实是轮询方式。
我们是否可以修改负载均衡的策略呢?
继续跟踪源码,发现这么一段代码:
我们看看这个rule是谁:
这里的rule默认值是一个RoundRobinRule,看类的介绍:
这不就是轮询的意思嘛。
我们注意到,这个类其实是实现了接口IRule的,查看一下:
定义负载均衡的规则接口。
它有以下实现:
SpringBoot也帮我们提供了修改负载均衡规则的配置入口:
user-service:
ribbon:
NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule
格式是:{服务名称}.ribbon.NFLoadBalancerRuleClassName,值就是IRule的实现类。
再次测试,发现结果变成了随机:
Eureka的服务治理强调了CAP原则中的AP,即可用性和可靠性。它与Zookeeper这一类强调CP(一致性,可靠性)的服务治理框架最大的区别在于:Eureka为了实现更高的服务可用性,牺牲了一定的一致性,极端情况下它宁愿接收故障实例也不愿丢掉健康实例,正如我们上面所说的自我保护机制。
但是,此时如果我们调用了这些不正常的服务,调用就会失败,从而导致其它服务不能正常工作!这显然不是我们愿意看到的。
我们现在关闭一个user-service实例:
因为服务剔除的延迟,consumer并不会立即得到最新的服务列表,此时再次访问你会得到错误提示:
但是此时,8081服务其实是正常的。
因此Spring Cloud 整合了Spring Retry 来增强RestTemplate的重试能力,当一次服务调用失败后,不会立即抛出一次,而是再次重试另一个服务。
只需要简单配置即可实现Ribbon的重试:
spring:
cloud:
loadbalancer:
retry:
enabled: true # 开启Spring Cloud的重试功能
user-service:
ribbon:
ConnectTimeout: 250 # Ribbon的连接超时时间
ReadTimeout: 1000 # Ribbon的数据读取超时时间
OkToRetryOnAllOperations: true # 是否对所有操作都进行重试
MaxAutoRetriesNextServer: 1 # 切换实例的重试次数
MaxAutoRetries: 1 # 对当前实例的重试次数
根据如上配置,当访问到某个服务超时后,它会再次尝试访问下一个服务实例,如果不行就再换一个实例,如果不行,则返回失败。切换次数取决于MaxAutoRetriesNextServer参数的值
引入spring-retry依赖
<dependency>
<groupId>org.springframework.retry</groupId>
<artifactId>spring-retry</artifactId>
</dependency>
我们重启user-consumer-demo,测试,发现即使user-service2宕机,也能通过另一台服务实例获取到结果!
Hystix,即熔断器。
主页:https://github.com/Netflix/Hystrix
Hystix是Netflix开源的一个延迟和容错库,用于隔离访问远程服务、第三方库,防止出现级联失败。
熔断状态机3个状态:
正常工作的情况下,客户端请求调用服务API接口:
当有服务出现异常时,直接进行失败回滚,服务降级处理:
服务降级:优先保证核心服务,而非核心服务不可用或弱可用
当服务繁忙时,如果服务出现异常,不是粗暴的直接报错,而是返回一个友好的提示,虽然拒绝了用户的访问,但是会返回一个结果。
服务降级虽然会导致请求失败,但是不会导致阻塞,而且最多会影响这个依赖服务对应线程池中的资源,对其他服务没有影响
这就好比去买鱼,平常超市买鱼会额外赠送杀鱼的服务。等到逢年过节,超时繁忙时,可能就不提供杀鱼服务了,这就是服务的降级。
系统特别繁忙时,一些次要服务暂时中断,优先保证主要服务的畅通,一切资源优先让给主要服务来使用,在双十一、618时,京东天猫都会采用这样的策略。
触发Hystix服务降级的情况:
首先在user-consumer中引入Hystix依赖:
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>
在引导类上添加一个注解:@EnableCircuitBreaker,或者使用组合注解**@SpringCloudApplication**
定义熔断方法:
局部使用:
**HystrixComand (fallbacklethod=局部熔断方法名”)**声明被熔断的方法
全局使用:
DeraultProperties (defaultEallback“全局熔断方法名")
我们改造user-consumer,添加一个用来访问的user服务的DAO,并且声明一个失败时的回滚处理函数:
@Component
public class UserDao {
@Autowired
private RestTemplate restTemplate;
private static final Logger logger = LoggerFactory.getLogger(UserDao.class);
@HystrixCommand(fallbackMethod = "queryUserByIdFallback")
public User queryUserById(Long id){
long begin = System.currentTimeMillis();
String url = "http://user-service/user/" + id;
User user = this.restTemplate.getForObject(url, User.class);
long end = System.currentTimeMillis();
// 记录访问用时:
logger.info("访问用时:{}", end - begin);
return user;
}
public User queryUserByIdFallback(Long id){
User user = new User();
user.setId(id);
user.setName("用户信息查询出现异常!");
return user;
}
}
在原来的业务逻辑中调用这个DAO:
@Service
public class UserService {
@Autowired
private UserDao userDao;
public List<User> queryUserByIds(List<Long> ids) {
List<User> users = new ArrayList<>();
ids.forEach(id -> {
// 我们测试多次查询,
users.add(this.userDao.queryUserById(id));
});
return users;
}
}
改造服务提供者,随机休眠一段时间,以触发熔断:
@Service
public class UserService {
@Autowired
private UserMapper userMapper;
public User queryById(Long id) throws InterruptedException {
// 为了演示超时现象,我们在这里然线程休眠,时间随机 0~2000毫秒
Thread.sleep(new Random().nextInt(2000));
return this.userMapper.selectByPrimaryKey(id);
}
}
然后运行并查看日志:
id为9、10、11的访问时间分别是:
id为12的访问时间:
因此,只有12是正常访问,其它都会触发熔断,我们来查看结果:
虽然熔断实现了,但是我们的重试机制似乎没有生效,是这样吗?
其实这里是因为我们的Ribbon超时时间设置的是1000ms:
而Hystix的超时时间默认也是1000ms,因此重试机制没有被触发,而是先触发了熔断。
所以,Ribbon的超时时间一定要小于Hystix的超时时间。
我们可以通过hystrix.command.default.execution.isolation.thread.timeoutInMilliseconds来设置Hystrix超时时间。
hystrix:
command:
default:
execution:
isolation:
thread:
timeoutInMillisecond: 6000 # 设置hystrix的超时时间为6000ms
在前面的学习中,我们使用了Ribbon的负载均衡功能,大大简化了远程调用时的代码:
String baseUrl = "http://user-service/user/";
User user = this.restTemplate.getForObject(baseUrl + id, User.class)
如果就学到这里,你可能以后需要编写类似的大量重复代码,格式基本相同,无非参数不一样。有没有更优雅的方式,来对这些代码再次优化呢?
这就是我们接下来要学的Feign的功能了。
有道词典的英文解释:
为什么叫伪装?
Feign可以把Rest的请求进行隐藏,伪装成类似SpringMVC的Controller一样。你不用再自己拼接url,拼接参数等等操作,一切都交给Feign去做。
项目主页:https://github.com/OpenFeign/feign
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
先在引导类上@EnableFeignClients
@FeignClient("user-service")
public interface UserFeignClient {
@GetMapping("/user/{id}")
User queryUserById(@PathVariable("id") Long id);
}
改造原来的调用逻辑,不再调用UserDao:
@Service
public class UserService {
@Autowired
private UserFeignClient userFeignClient;
public List<User> queryUserByIds(List<Long> ids) {
List<User> users = new ArrayList<>();
ids.forEach(id -> {
// 我们测试多次查询,
users.add(this.userFeignClient.queryUserById(id));
});
return users;
}
}
我们在启动类上,添加注解,开启Feign功能
@SpringBootApplication
@EnableDiscoveryClient
@EnableHystrix
@EnableFeignClients // 开启Feign功能
public class UserConsumerDemoApplication {
public static void main(String[] args) {
SpringApplication.run(UserConsumerDemoApplication.class, args);
}
}
访问接口:
正常获取到了结果。
Feign中本身已经集成了Ribbon依赖和自动配置:
因此我们不需要额外引入依赖,也不需要再注册RestTemplate对象。
另外,我们可以像上节课中讲的那样去配置Ribbon,可以通过ribbon.xx来进行全局配置。也可以通过服务名.ribbon.xx来对指定服务配置:
user-service:
ribbon:
ConnectTimeout: 250 # 连接超时时间(ms)
ReadTimeout: 1000 # 通信超时时间(ms)
OkToRetryOnAllOperations: true # 是否对所有操作重试
MaxAutoRetriesNextServer: 1 # 同一服务不同实例的重试次数
MaxAutoRetries: 1 # 同一实例的重试次数
Feign默认也有对Hystix的集成:
只不过,默认情况下是关闭的。我们需要通过下面的参数来开启:
feign:
hystrix:
enabled: true # 开启Feign的熔断功能
但是,Feign中的Fallback配置不像Ribbon中那样简单了。
1)首先,我们要定义一个类,实现刚才编写的UserFeignClient,作为fallback的处理类
@Component//注入spring容器
public class UserFeignClientFallback implements UserFeignClient {
@Override
public User queryUserById(Long id) {
User user = new User();
user.setId(id);
user.setName("用户查询出现异常!");
return user;
}
}
2)然后在UserFeignClient中,指定刚才编写的实现类
@FeignClient(value = "user-service", fallback = UserFeignClientFallback.class)
public interface UserFeignClient {
@GetMapping("/user/{id}")
User queryUserById(@PathVariable("id") Long id);
}
3)重启测试:
我们关闭user-service服务,然后在页面访问:
Spring Cloud Feign 支持对请求和响应进行GZIP压缩,以减少通信过程中的性能损耗。通过下面的参数即可开启请求与响应的压缩功能:
feign:
compression:
request:
enabled: true # 开启请求压缩
response:
enabled: true # 开启响应压缩
同时,我们也可以对请求的数据类型,以及触发压缩的大小下限进行设置:
feign:
compression:
request:
enabled: true # 开启请求压缩
mime-types: text/html,application/xml,application/json # 设置压缩的数据类型
min-request-size: 2048 # 设置触发压缩的大小下限
注:上面的数据类型、压缩大小下限均为默认值。
前面讲过,通过logging.level.xx=debug来设置日志级别。然而这个对Fegin客户端而言不会产生效果。因为**@FeignClient**注解修改的客户端在被代理时,都会创建一个新的Fegin.Logger实例。我们需要额外指定这个日志的级别才可以。
1)设置com.leyou包下的日志级别都为debug
logging:
level:
com.leyou: debug
2)编写配置类,定义日志级别
@Configuration
public class FeignConfig {
@Bean
Logger.Level feignLoggerLevel(){
return Logger.Level.FULL;
}
}
这里指定的Level级别是FULL,Feign支持4种级别:
3)在FeignClient中指定配置类:
@FeignClient(value = "user-service", fallback = UserFeignClientFallback.class, configuration = FeignConfig.class)
public interface UserFeignClient {
@GetMapping("/user/{id}")
User queryUserById(@PathVariable("id") Long id);
}
4)重启项目,即可看到每次访问的日志:
通过前面的学习,使用Spring Cloud实现微服务的架构基本成型,大致是这样的:
我们使用Spring Cloud Netflix中的Eureka实现了服务注册中心以及服务注册与发现;而服务间通过Ribbon或Feign实现服务的消费以及均衡负载;通过Spring Cloud Config实现了应用多环境的外部化配置以及版本管理。为了使得服务集群更为健壮,使用Hystrix的融断机制来避免在微服务架构中个别服务出现异常时引起的故障蔓延。
在该架构中,我们的服务集群包含:内部服务Service A和Service B,他们都会注册与订阅服务至Eureka Server,而Open Service是一个对外的服务,通过均衡负载公开至服务调用方。我们把焦点聚集在对外服务这块,直接暴露我们的服务地址,这样的实现是否合理,或者是否有更好的实现方式呢?
先来说说这样架构需要做的一些事儿以及存在的不足:
面对类似上面的问题,我们要如何解决呢?答案是:服务网关!
为了解决上面这些问题,我们需要将权限控制这样的东西从我们的服务单元中抽离出去,而最适合这些逻辑的地方就是处于对外访问最前端的地方,我们需要一个更强大一些的均衡负载器的 服务网关。
服务网关是微服务架构中一个不可或缺的部分。通过服务网关统一向外系统提供REST API的过程中,除了具备服务路由、均衡负载功能之外,它还具备了权限控制等功能。Spring Cloud Netflix中的Zuul就担任了这样的一个角色,为微服务架构提供了前门保护的作用,同时将权限控制这些较重的非业务逻辑内容迁移到服务路由层面,使得服务集群主体能够具备更高的可复用性和可测试性。
官网:https://github.com/Netflix/zuul
Zuul:维基百科:
电影《捉鬼敢死队》中的怪兽,Zuul,在纽约引发了巨大骚乱。
事实上,在微服务架构中,Zuul就是守门的大Boss!一夫当关,万夫莫开!
填写基本信息:
添加Zuul依赖:
通过**@EnableZuulProxy** 注解开启Zuul的功能:
@SpringBootApplication
@EnableZuulProxy // 开启Zuul的网关功能
public class ZuulDemoApplication {
public static void main(String[] args) {
SpringApplication.run(ZuulDemoApplication.class, args);
}
}
server:
port: 10010 #服务端口
spring:
application:
name: api-gateway #指定服务名
我们需要用Zuul来代理user-service服务,先看一下控制面板中的服务状态:
映射规则:
zuul:
routes:
user-service: # 这里是路由id,随意写
path: /user-service/** # 这里是映射路径
url: http://127.0.0.1:8081 # 映射路径对应的实际url地址
我们将符合path规则的一切请求,都代理到 url参数指定的地址
本例中,我们将 **/user-service/**开头的请求,代理到http://127.0.0.1:8081
访问的路径中需要加上配置规则的映射路径,我们访问:http://127.0.0.1:8081/user-service/user/10
在刚才的路由规则中,我们把路径对应的服务地址写死了!如果同一服务有多个实例的话,这样做显然就不合理了。
我们应该根据服务的名称,去Eureka注册中心查找 服务对应的所有实例列表,然后进行动态路由才对!
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
@SpringBootApplication
@EnableZuulProxy // 开启Zuul的网关功能
@EnableDiscoveryClient//启用Eureka
public class ZuulDemoApplication {
public static void main(String[] args) {
SpringApplication.run(ZuulDemoApplication.class, args);
}
}
eureka:
client:
registry-fetch-interval-seconds: 5 # 获取服务列表的周期:5s
service-url:
defaultZone: http://127.0.0.1:10086/eureka
instance:
prefer-ip-address: true
ip-address: 127.0.0.1
因为已经有了Eureka客户端,我们可以从Eureka获取服务的地址信息,因此映射时无需指定IP地址,而是通过服务名称来访问,而且Zuul已经集成了Ribbon的负载均衡功能。
zuul:
routes:
user-service: # 这里是路由id,随意写
path: /user-service/** # 这里是映射路径
serviceId: user-service # 指定服务名称
再次启动,这次Zuul进行代理时,会利用Ribbon进行负载均衡访问:
日志中可以看到使用了负载均衡器:
在刚才的配置中,我们的规则是这样的:
而大多数情况下,我们的
比方说上面我们关于user-service的配置可以简化为一条:
zuul:
routes:
user-service: /user-service/** # 这里是映射路径
省去了对服务名称的配置。
在使用Zuul的过程中,上面讲述的规则已经大大的简化了配置项。但是当服务较多时,配置也是比较繁琐的。因此Zuul就指定了默认的路由规则:
也就是说,刚才的映射规则我们完全不配置也是OK的,不信就试试看。
配置示例:
zuul:
prefix: /api # 添加路由前缀
routes:
user-service: # 这里是路由id,随意写
path: /user-service/** # 这里是映射路径
service-id: user-service # 指定服务名称
我们通过zuul.prefix=/api来指定了路由的前缀,这样在发起请求时,路径就要以/api开头。
路径**/api/user-service/user/1将会被代理到/user-service/user/1 **
Zuul作为网关的其中一个重要功能,就是实现请求的鉴权。而这个动作我们往往是通过Zuul提供的过滤器来实现的。
ZuulFilter是过滤器的顶级父类。在这里我们看一下其中定义的4个最重要的方法:
public abstract ZuulFilter implements IZuulFilter{
abstract public String filterType();
abstract public int filterOrder();
boolean shouldFilter();// 来自IZuulFilter
Object run() throws ZuulException;// IZuulFilter
}
这张是Zuul官网提供的请求生命周期图,清晰的表现了一个请求在各个过滤器的执行顺序。
所有内置过滤器列表:
场景非常多:
接下来我们来自定义一个过滤器,模拟一个登录的校验。基本逻辑:如果请求中有access-token参数,则认为请求有效,放行。
@Component
public class LoginFilter extends ZuulFilter{
@Override
public String filterType() {
// 登录校验,肯定是在前置拦截
return "pre";
}
//返回值越小,优先级越高
@Override
public int filterOrder() {
// 顺序设置为1
return 1;
}
//是否执行run()
@Override
public boolean shouldFilter() {
// 返回true,代表过滤器生效。
return true;
}
@Override
public Object run() throws ZuulException {
// 登录校验逻辑。
// 1)获取Zuul提供的请求上下文对象
RequestContext ctx = RequestContext.getCurrentContext();
// 2) 从上下文中获取request对象
HttpServletRequest req = ctx.getRequest();
// 3) 从请求中获取token
String token = req.getParameter("access-token");
// 4) 判断
if(token == null || "".equals(token.trim())){
// 没有token,登录校验失败,拦截
ctx.setSendZuulResponse(false);
// 返回401状态码。也可以考虑重定向到登录页。
ctx.setResponseStatusCode(HttpStatus.UNAUTHORIZED.value());
//响应友好页面
// ctx.setResponseBody("request error!");
}
// 校验通过,可以考虑把用户信息放入上下文,继续向后执行
return null;
}
}
没有token参数时,访问失败:
添加token参数后:
Zuul中默认就已经集成了Ribbon负载均衡和Hystix熔断机制。但是所有的超时策略都是走的默认值,比如熔断超时时间只有1S,很容易就触发了。因此建议我们手动进行配置:
zuul:
retryable: true
ribbon:
ConnectTimeout: 250 # 连接超时时间(ms)
ReadTimeout: 2000 # 通信超时时间(ms)
OkToRetryOnAllOperations: true # 是否对所有操作重试
MaxAutoRetriesNextServer: 2 # 同一服务不同实例的重试次数
MaxAutoRetries: 1 # 同一实例的重试次数
hystrix:
command:
default:
execution:
isolation:
thread:
timeoutInMillisecond: 6000 # 熔断超时时长:6000ms
评论