Elastic官网:https://www.elastic.co/cn/
Elastic有一条完整的产品线及解决方案:Elasticsearch、Kibana、Logstash等,前面说的三个就是大家常说的ELK技术栈。
Elasticsearch官网:https://www.elastic.co/cn/products/elasticsearch
如上所述,Elasticsearch具备以下特点:
Elasticsearch安装
docker安装Elasticsearch
系统参数问题
跨域操作
IK分词器配置
Kibana的使用->==DSL语句==
Kibana->DSL语句操作->Elasticsearch
==ES导入商品搜索数据==
Sku数据导入到Elasticsearch
Map数据类型->Object
==关键词搜索->能够实现搜索流程代码的编写==
==分类统计搜索==
(1)docker镜像下载
docker pull elasticsearch:5.6.8
(2)安装es容器
docker run -di --name=changgou_elasticsearch -p 9200:9200 -p 9300:9300 elasticsearch:5.6.8
浏览器输入地址访问:http://192.168.211.132:9200/
(3)开启远程连接
上面完成安装后,es并不能正常使用,elasticsearch从5版本以后默认不开启远程连接,程序直接连接会报如下错误:
failed to load elasticsearch nodes : org.elasticsearch.client.transport.NoNodeAvailableException: None of the configured nodes are available: [{#transport#-1}{5ttLpMhkRjKLkvoY7ltUWg}{192.168.211.132}{192.168.211.132:9300}]
我们需要修改es配置开启远程连接,代码如下:
登录容器
docker exec -it changgou_elasticsearch /bin/bash
查看目录结构 输入: dir
root@07f22eb41bb5:/usr/share/elasticsearch# dir
NOTICE.txt README.textile bin config data lib logs modules plugins
进入config目录
cd config
查看文件
root@07f22eb41bb5:/usr/share/elasticsearch/config# ls
elasticsearch.yml log4j2.properties scripts
修改elasticsearch.yml文件
root@07f22eb41bb5:/usr/share/elasticsearch/config# vi elasticsearch.yml
bash: vi: command not found
vi命令无法识别,因为docker容器里面没有该命令,我们可以安装该编辑器。
安装vim编辑器
apt-get update
apt-get install vim
安装好了后,修改elasticsearch.yml配置,如下图:
vi elasticsearch.yml
修改如下图:
同时添加下面一行代码:
cluster.name: my-application
重启docker
docker restart changgou_elasticsearch
(4)系统参数配置
重启后发现重启启动失败了,这时什么原因呢?这与我们刚才修改的配置有关,因为elasticsearch在启动的时候会进行一些检查,比如最多打开的文件的个数以及虚拟内存区域数量等等,如果你放开了此配置,意味着需要打开更多的文件以及虚拟内存,所以我们还需要系统调优
修改vi /etc/security/limits.conf ,追加内容 (nofile是单个进程允许打开的最大文件个数 soft nofile 是软限制 hard nofile是硬限制 )
* soft nofile 65536
* hard nofile 65536
修改vi /etc/sysctl.conf,追加内容 (限制一个进程可以拥有的VMA(虚拟内存区域)的数量 )
vm.max_map_count=655360
执行下面命令 修改内核参数马上生效
sysctl -p
重新启动虚拟机,再次启动容器,发现已经可以启动并远程访问
reboot
(5)跨域配置
修改elasticsearch/config下的配置文件:elasticsearch.yml,增加以下三句命令,并重启:
http.cors.enabled: true
http.cors.allow-origin: "*"
network.host: 192.168.211.132
其中: http.cors.enabled: true:此步为允许elasticsearch跨域访问,默认是false。 http.cors.allow-origin: "*":表示跨域访问允许的域名地址(*表示任意)。
重启
docker restart changgou_elasticsearch
小提示:如果想让容器开启重启,可以执行下面命令
docker update --restart=always 容器名称或者容器id
(1)安装ik分词器
IK分词器下载地址https://github.com/medcl/elasticsearch-analysis-ik/releases
将ik分词器上传到服务器上,然后解压,并改名字为ik
unzip elasticsearch-analysis-ik-5.6.8.zip
mv elasticsearch ik
将ik目录拷贝到docker容器的plugins目录下
docker cp ./ik changgou_elasticsearch:/usr/share/elasticsearch/plugins
(2)IK分词器测试
访问:http://192.168.211.132:9200/_analyze?analyzer=ik_smart&pretty=true&text=我是程序员
访问:http://192.168.211.132:9200/_analyze?analyzer=ik_max_word&pretty=true&text=我是程序员
我们上面使用的是elasticsearch-head插件实现数据查找的,但是elasticsearch-head的功能比较单一,我们这里需要一个更专业的工具实现对日志的实时分析。
Kibana 是一款开源的数据分析和可视化平台,它是 Elastic Stack 成员之一,设计用于和 Elasticsearch 协作。您可以使用 Kibana 对 Elasticsearch 索引中的数据进行搜索、查看、交互操作。您可以很方便的利用图表、表格及地图对数据进行多元化的分析和呈现。
Kibana 可以使大数据通俗易懂。它很简单,基于浏览器的界面便于您快速创建和分享动态数据仪表板来追踪 Elasticsearch 的实时数据变化。
搭建 Kibana 非常简单。您可以分分钟完成 Kibana 的安装并开始探索 Elasticsearch 的索引数据 — 没有代码、不需要额外的基础设施。
(1)镜像下载
docker pull docker.io/kibana:5.6.8
(2)安装kibana容器
执行如下命令,开始安装kibana容器
docker run -it -d -e ELASTICSEARCH_URL=http://192.168.211.132:9200 --name kibana --restart=always -p 5601:5601 kibana:5.6.8
ELASTICSEARCH_URL=http://192.168.211.132:9200:是指链接的ES地址
restart=always:每次服务都会重启,也就是开启启动
5601:5601:端口号
(3)访问测试
访问http://192.168.211.132:5601
如下:
要使用Kibana,您必须至少配置一个索引。索引用于标识Elasticsearch索引以运行搜索和分析。它们还用于配置字段。
我们修改索引名称的匹配方式即可,下面2个选项不用勾选。点击create,会展示出当前配置的索引的域信息,如下图:
域的每个标题选项分别代表如下意思:
Discover为数据搜索部分,可以对日志信息进行搜索操作。
可以使用Discover实现数据搜索过滤和搜索条件显示以及关键词搜索,如下图:
Query DSL是一个Java开源框架用于构建类型安全的SQL查询语句。采用API代替传统的拼接字符串来构造查询语句。目前Querydsl支持的平台包括JPA,JDO,SQL,Java Collections,RDF,Lucene,Hibernate Search。elasticsearch提供了一整套基于JSON的查询DSL语言来定义查询。 Query DSL当作是一系列的抽象的查询表达式树(AST)特定查询能够包含其它的查询,(如 bool ), 有些查询能够包含过滤器(如 constant_score), 还有的可以同时包含查询和过滤器 (如 filtered). 都能够从ES支持查询集合里面选择任意一个查询或者是从过滤器集合里面挑选出任意一个过滤器, 这样的话,我们就可以构造出任意复杂(maybe 非常有趣)的查询了。
(1)查询所有索引
GET /_cat/indices?v
结果如下:
(2)删除某个索引库
DELETE /userinfo
效果如下:
(3)新增索引
PUT /user
效果如下:
(4)创建映射
#/索引库/类型/映射
PUT /user/userinfo/_mapping
{
"properties": {
"name":{
"type": "text",
"analyzer": "ik_smart",
"search_analyzer": "ik_smart",
"store": false
},
"city":{
"type": "text",
"analyzer": "ik_smart",
"search_analyzer": "ik_smart",
"store": false
},
"age":{
"type": "long",
"store": false
},
"description":{
"type": "text",
"analyzer": "ik_smart",
"search_analyzer": "ik_smart",
"store": false
}
}
}
效果如下:
(5)新增文档数据
PUT /user/userinfo/1
{
"name":"李四",
"age":22,
"city":"深圳",
"description":"李四来自湖北武汉!"
}
效果如下:
我们再增加3条记录:
#新增文档数据 id=2
PUT /user/userinfo/2
{
"name":"王五",
"age":35,
"city":"深圳",
"description":"王五家住在深圳!"
}
#新增文档数据 id=3
PUT /user/userinfo/3
{
"name":"张三",
"age":19,
"city":"深圳",
"description":"在深圳打工,来自湖北武汉"
}
#新增文档数据 id=4
PUT /user/userinfo/4
{
"name":"张三丰",
"age":66,
"city":"武汉",
"description":"在武汉读书,家在武汉!"
}
#新增文档数据 id=5
PUT /user/userinfo/5
{
"name":"赵子龙",
"age":77,
"city":"广州",
"description":"赵子龙来自深圳宝安,但是在广州工作!",
"address":"广东省茂名市"
}
#新增文档数据 id=6
PUT /user/userinfo/6
{
"name":"赵毅",
"age":55,
"city":"广州",
"description":"赵毅来自广州白云区,从事电子商务8年!"
}
#新增文档数据 id=7
PUT /user/userinfo/7
{
"name":"赵哈哈",
"age":57,
"city":"武汉",
"description":"武汉赵哈哈,在深圳打工已有半年了,月薪7500!"
}
(6)修改数据
a.替换操作
更新数据可以使用之前的增加操作,这种操作会将整个数据替换掉,代码如下:
#更新数据,id=4
PUT /user/userinfo/4
{
"name":"张三丰",
"description":"在武汉读书,家在武汉!在深圳工作!"
}
效果如下:
使用GET命令查看:
#根据ID查询
GET /user/userinfo/4
效果如下:
b.更新操作
我们先使用下面命令恢复数据:
#恢复文档数据 id=4
PUT /user/userinfo/4
{
"name":"张三丰",
"age":66,
"city":"武汉",
"description":"在武汉读书,家在武汉!"
}
使用POST更新某个列的数据
#使用POST更新某个域的数据
POST /user/userinfo/4/_update
{
"doc":{
"name":"张三丰",
"description":"在武汉读书,家在武汉!在深圳工作!"
}
}
效果如下:
使用GET命令查看:
#根据ID查询
GET /user/userinfo/4
效果如下:
(7)删除Document
#删除数据
DELETE user/userinfo/7
(1)查询所有数据
#查询所有
GET /user/_search
效果如下:
(2)根据ID查询
#根据ID查询
GET /user/userinfo/2
效果如下:
(3)Sort排序
#搜索排序
GET /user/_search
{
"query":{
"match_all": {}
},
"sort":{
"age":{
"order":"desc"
}
}
}
效果如下:
(4)分页
#分页实现
GET /user/_search
{
"query":{
"match_all": {}
},
"sort":{
"age":{
"order":"desc"
}
},
"from": 0,
"size": 2
}
解释:
from:从下N的记录开始查询
size:每页显示条数
效果如下:
(1)term过滤
term主要用于分词精确匹配,如字符串、数值、日期等(不适合情况:1.列中除英文字符外有其它值 2.字符串值中有冒号或中文 3.系统自带属性如_version)
如下案例:
#过滤查询-term
GET _search
{
"query":{
"term":{
"city":"武汉"
}
}
}
效果如下:
(2)terms 过滤
terms 跟 term 有点类似,但 terms 允许指定多个匹配条件。 如果某个字段指定了多个值,那么文档需要一起去做匹配 。
案例如下:
#过滤查询-terms 允许多个Term
GET _search
{
"query":{
"terms":{
"city":
[
"武汉",
"广州"
]
}
}
}
果如下:
(3) range 过滤
range过滤允许我们按照指定范围查找一批数据。例如我们查询年龄范围
案例如下:
#过滤-range 范围过滤
#gt表示> gte表示=>
#lt表示< lte表示<=
GET _search
{
"query":{
"range": {
"age": {
"gte": 30,
"lte": 57
}
}
}
}
上图效果如下:
(4)exists过滤
exists 过滤可以用于查找拥有某个域的数据
案例如下:
#过滤搜索 exists:是指包含某个域的数据检索
GET _search
{
"query": {
"exists":{
"field":"address"
}
}
}
效果如下:
(5) bool 过滤
bool 过滤可以用来合并多个过滤条件查询结果的布尔逻辑,它包含一下操作符:
这些参数可以分别继承一个过滤条件或者一个过滤条件的数组:
案例如下:
#过滤搜索 bool
#must : 多个查询条件的完全匹配,相当于 and。
#must_not : 多个查询条件的相反匹配,相当于 not。
#should : 至少有一个查询条件匹配, 相当于 or。
GET _search
{
"query": {
"bool": {
"must": [
{
"term": {
"city": {
"value": "深圳"
}
}
},
{
"range":{
"age":{
"gte":20,
"lte":99
}
}
}
]
}
}
}
效果如下:
(6) match_all 查询
可以查询到所有文档,是没有查询条件下的默认语句。
案例如下:
#查询所有 match_all
GET _search
{
"query": {
"match_all": {}
}
}
(7) match 查询
match查询是一个标准查询,不管你需要全文本查询还是精确查询基本上都要用到它。
如果你使用 match 查询一个全文本字段,它会在真正查询之前用分析器先分析match一下查询字符:
案例如下:
#字符串匹配
GET _search
{
"query": {
"match": {
"description": "武汉"
}
}
}
效果如下:
(8)prefix 查询
以什么字符开头的,可以更简单地用 prefix ,例如查询所有以张开始的用户描述
案例如下:
#前缀匹配 prefix
GET _search
{
"query": {
"prefix": {
"name": {
"value": "赵"
}
}
}
}
效果如下:
(9)multi_match 查询
multi_match查询允许你做match查询的基础上同时搜索多个字段,在多个字段中同时查一个
案例如下:
#多个域匹配搜索
GET _search
{
"query": {
"multi_match": {
"query": "深圳",
"fields": [
"city",
"description"
]
}
}
}
效果如下:
#查看所有索引
GET /_cat/indices?v
#删除某个索引
DELETE /skuinfo
#新增索引
PUT /user
#创建映射
PUT /user/userinfo/_mapping
{
"properties": {
"name":{
"type": "text",
"analyzer": "ik_smart",
"search_analyzer": "ik_smart",
"store": false
},
"city":{
"type": "text",
"analyzer": "ik_smart",
"search_analyzer": "ik_smart",
"store": false
},
"age":{
"type": "long",
"store": false
},
"description":{
"type": "text",
"analyzer": "ik_smart",
"search_analyzer": "ik_smart",
"store": false
}
}
}
#新增文档数据 id=1
PUT /user/userinfo/1
{
"name":"李四",
"age":22,
"city":"深圳",
"description":"李四来自湖北武汉!"
}
#新增文档数据 id=2
PUT /user/userinfo/2
{
"name":"王五",
"age":35,
"city":"深圳",
"description":"王五家住在深圳!"
}
#新增文档数据 id=3
PUT /user/userinfo/3
{
"name":"张三",
"age":19,
"city":"深圳",
"description":"在深圳打工,来自湖北武汉"
}
#新增文档数据 id=4
PUT /user/userinfo/4
{
"name":"张三丰",
"age":66,
"city":"武汉",
"description":"在武汉读书,家在武汉!"
}
#新增文档数据 id=5
PUT /user/userinfo/5
{
"name":"赵子龙",
"age":77,
"city":"广州",
"description":"赵子龙来自深圳宝安,但是在广州工作!",
"address":"广东省茂名市"
}
#新增文档数据 id=6
PUT /user/userinfo/6
{
"name":"赵毅",
"age":55,
"city":"广州",
"description":"赵毅来自广州白云区,从事电子商务8年!"
}
#新增文档数据 id=7
PUT /user/userinfo/7
{
"name":"赵哈哈",
"age":57,
"city":"武汉",
"description":"武汉赵哈哈,在深圳打工已有半年了,月薪7500!"
}
#更新数据,id=4
PUT /user/userinfo/4
{
"name":"张三丰",
"description":"在武汉读书,家在武汉!在深圳工作!"
}
#根据ID查询
GET /user/userinfo/4
#恢复文档数据 id=4
PUT /user/userinfo/4
{
"name":"张三丰",
"age":66,
"city":"武汉",
"description":"在武汉读书,家在武汉!"
}
#使用POST更新某个域的数据
POST /user/userinfo/4/_update
{
"doc":{
"name":"张三丰",
"description":"在武汉读书,家在武汉!在深圳工作!"
}
}
#根据ID查询
GET /user/userinfo/4
#删除数据
DELETE user/userinfo/4
#查询所有
GET /user/_search
#根据ID查询
GET /user/userinfo/2
#搜索排序
GET /user/_search
{
"query":{
"match_all": {}
},
"sort":{
"age":{
"order":"desc"
}
}
}
#分页实现
GET /user/_search
{
"query":{
"match_all": {}
},
"sort":{
"age":{
"order":"desc"
}
},
"from": 0,
"size": 2
}
#过滤查询-term
GET _search
{
"query":{
"term":{
"city":"武汉"
}
}
}
#过滤查询-terms 允许多个Term
GET _search
{
"query":{
"terms":{
"city":
[
"武汉",
"广州"
]
}
}
}
#过滤-range 范围过滤
#gt表示> gte表示=>
#lt表示< lte表示<=
GET _search
{
"query":{
"range": {
"age": {
"gte": 30,
"lte": 57
}
}
}
}
#过滤搜索 exists:是指包含某个域的数据检索
GET _search
{
"query": {
"exists":{
"field":"address"
}
}
}
#过滤搜索 bool
#must : 多个查询条件的完全匹配,相当于 and。
#must_not : 多个查询条件的相反匹配,相当于 not。
#should : 至少有一个查询条件匹配, 相当于 or。
GET _search
{
"query": {
"bool": {
"must": [
{
"term": {
"city": {
"value": "深圳"
}
}
},
{
"range":{
"age":{
"gte":20,
"lte":99
}
}
}
]
}
}
}
#查询所有 match_all
GET _search
{
"query": {
"match_all": {}
}
}
#字符串匹配
GET _search
{
"query": {
"match": {
"description": "武汉"
}
}
}
#前缀匹配 prefix
GET _search
{
"query": {
"prefix": {
"name": {
"value": "赵"
}
}
}
}
#多个域匹配搜索
GET _search
{
"query": {
"multi_match": {
"query": "深圳",
"fields": [
"city",
"description"
]
}
}
}
Elasticsearch提供的Java客户端有一些不太方便的地方:
因此,我们这里就不讲解原生的Elasticsearch客户端API了。
而是学习Spring提供的套件:Spring Data Elasticsearch。
Spring Data Elasticsearch是Spring Data项目下的一个子模块。
查看 Spring Data的官网:http://projects.spring.io/spring-data/
Spring Data的使命是为数据访问提供熟悉且一致的基于Spring的编程模型,同时仍保留底层数据存储的特殊特性。
它使得使用数据访问技术,关系数据库和非关系数据库,map-reduce框架和基于云的数据服务变得容易。这是一个总括项目,其中包含许多特定于给定数据库的子项目。这些令人兴奋的技术项目背后,是由许多公司和开发人员合作开发的。
Spring Data 的使命是给各种数据访问提供统一的编程接口,不管是关系型数据库(如MySQL),还是非关系数据库(如Redis),或者类似Elasticsearch这样的索引数据库。从而简化开发人员的代码,提高开发效率。
包含很多不同数据操作的模块:
Spring Data Elasticsearch的页面:https://projects.spring.io/spring-data-elasticsearch/
特征:
@Configuration
的java配置方式,或者XML配置方式ElasticsearchTemplate
**。包括实现文档到POJO之间的自动智能映射。我们新建一个demo,学习Elasticsearch
pom依赖:
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.sakura.elasticsearch</groupId>
<artifactId>sakura-elasticsearch</artifactId>
<version>1.0.0-SNAPSHOT</version>
<name>sakura-elasticsearch</name>
<packaging>jar</packaging>
<description>Demo project for Spring Boot</description>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.0.2.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<java.version>1.8</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>
application.yml文件配置:
spring:
data:
elasticsearch:
cluster-name: my-application
cluster-nodes: 192.168.211.132:9300
首先我们准备好实体类:
public class Item {
Long id;
String title; //标题
String category;// 分类
String brand; // 品牌
Double price; // 价格
String images; // 图片地址
}
映射
Spring Data通过注解来声明字段的映射属性,有下面的三个注解:
@Document
作用在类,标记实体类为文档对象,一般有两个属性
@Id
作用在成员变量,标记一个字段作为id主键@Field
作用在成员变量,标记为文档的字段,并指定字段映射属性:
示例:
@Document(indexName = "item",type = "docs", shards = 1, replicas = 0)
public class Item {
@Id
private Long id;
@Field(type = FieldType.Text, analyzer = "ik_max_word")
private String title; //标题
@Field(type = FieldType.Keyword)
private String category;// 分类
@Field(type = FieldType.Keyword)
private String brand; // 品牌
@Field(type = FieldType.Double)
private Double price; // 价格
@Field(index = false, type = FieldType.Keyword)
private String images; // 图片地址
}
创建索引
ElasticsearchTemplate中提供了创建索引的API:
可以根据类的信息自动生成,也可以手动指定indexName和Settings
映射
映射相关的API:
可以根据类的字节码信息(注解配置)来生成映射,或者手动编写映射
我们这里采用类的字节码信息创建索引并映射:
@RunWith(SpringRunner.class)
@SpringBootTest
public class SakuraElasticsearchApplicationTests {
@Autowired
private ElasticsearchTemplate elasticsearchTemplate;
@Test
public void testCreate(){
// 创建索引,会根据Item类的@Document注解信息来创建
elasticsearchTemplate.createIndex(Item.class);
// 配置映射,会根据Item类中的id、Field等字段来自动完成映射
elasticsearchTemplate.putMapping(Item.class);
}
Kibana结果:
GET /item
{
"item": {
"aliases": {},
"mappings": {
"docs": {
"properties": {
"brand": {
"type": "keyword"
},
"category": {
"type": "keyword"
},
"images": {
"type": "keyword",
"index": false
},
"price": {
"type": "double"
},
"title": {
"type": "text",
"analyzer": "ik_max_word"
}
}
}
},
"settings": {
"index": {
"refresh_interval": "1s",
"number_of_shards": "1",
"provided_name": "item",
"creation_date": "1525405022589",
"store": {
"type": "fs"
},
"number_of_replicas": "0",
"uuid": "4sE9SAw3Sqq1aAPz5F6OEg",
"version": {
"created": "6020499"
}
}
}
}
}
删除索引的API:
可以根据类名或索引名删除。
示例:
@Test
public void deleteIndex() {
esTemplate.deleteIndex("sakura");
}
结果:
Spring Data 的强大之处,就在于你不用写任何DAO处理,自动根据方法名或类的信息进行CRUD操作。只要你定义一个接口,然后继承Repository提供的一些子接口,就能具备各种基本的CRUD功能。
我们只需要定义接口,然后继承它就OK了。
public interface ItemRepository extends ElasticsearchRepository<Item,Long> {
}
来看下Repository的继承关系:
我们看到有一个ElasticsearchRepository接口:
@Autowired
private ItemRepository itemRepository;
@Test
public void index() {
Item item = new Item(1L, "小米手机7", " 手机",
"小米", 3499.00, "http://image.leyou.com/13123.jpg");
itemRepository.save(item);
}
去页面查询看看:
GET /item/_search
结果:
{
"took": 14,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 1,
"hits": [
{
"_index": "item",
"_type": "docs",
"_id": "1",
"_score": 1,
"_source": {
"id": 1,
"title": "小米手机7",
"category": " 手机",
"brand": "小米",
"price": 3499,
"images": "http://image.leyou.com/13123.jpg"
}
}
]
}
}
代码:
@Test
public void indexList() {
List<Item> list = new ArrayList<>();
list.add(new Item(2L, "坚果手机R1", " 手机", "锤子", 3699.00, "http://image.leyou.com/123.jpg"));
list.add(new Item(3L, "华为META10", " 手机", "华为", 4499.00, "http://image.leyou.com/3.jpg"));
// 接收对象集合,实现批量新增
itemRepository.saveAll(list);
}
再次去页面查询:
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "item",
"_type": "docs",
"_id": "2",
"_score": 1,
"_source": {
"id": 2,
"title": "坚果手机R1",
"category": " 手机",
"brand": "锤子",
"price": 3699,
"images": "http://image.leyou.com/13123.jpg"
}
},
{
"_index": "item",
"_type": "docs",
"_id": "3",
"_score": 1,
"_source": {
"id": 3,
"title": "华为META10",
"category": " 手机",
"brand": "华为",
"price": 4499,
"images": "http://image.leyou.com/13123.jpg"
}
},
{
"_index": "item",
"_type": "docs",
"_id": "1",
"_score": 1,
"_source": {
"id": 1,
"title": "小米手机7",
"category": " 手机",
"brand": "小米",
"price": 3499,
"images": "http://image.leyou.com/13123.jpg"
}
}
]
}
}
修改和新增是同一个接口,区分的依据就是id,这一点跟我们在页面发起PUT请求是类似的。
ElasticsearchRepository提供了一些基本的查询方法:
我们来试试查询所有:
@Test
public void testFind(){
// 查询全部,并安装价格降序排序
Iterable<Item> items = this.itemRepository.findAll(Sort.by(Sort.Direction.DESC, "price"));
items.forEach(item-> System.out.println(item));
}
结果:
Spring Data 的另一个强大功能,是根据方法名称自动实现功能。
比如:你的方法名叫做:findByTitle,那么它就知道你是根据title查询,然后自动帮你完成,无需写实现类。
当然,方法名称要符合一定的约定:
Keyword | Sample | Elasticsearch Query String |
---|---|---|
And | findByNameAndPrice | {"bool" : {"must" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}} |
Or | findByNameOrPrice | {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}} |
Is | findByName | {"bool" : {"must" : {"field" : {"name" : "?"}}}} |
Not | findByNameNot | {"bool" : {"must_not" : {"field" : {"name" : "?"}}}} |
Between | findByPriceBetween | {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : ?,"include_lower" : true,"include_upper" : true}}}}} |
LessThanEqual | findByPriceLessThan | {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}} |
GreaterThanEqual | findByPriceGreaterThan | {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}} |
Before | findByPriceBefore | {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}} |
After | findByPriceAfter | {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}} |
Like | findByNameLike | {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}} |
StartingWith | findByNameStartingWith | {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}} |
EndingWith | findByNameEndingWith | {"bool" : {"must" : {"field" : {"name" : {"query" : "*?","analyze_wildcard" : true}}}}} |
Contains/Containing | findByNameContaining | {"bool" : {"must" : {"field" : {"name" : {"query" : "**?**","analyze_wildcard" : true}}}}} |
In | findByNameIn(Collection<String>names) | {"bool" : {"must" : {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"name" : "?"}} ]}}}} |
NotIn | findByNameNotIn(Collection<String>names) | {"bool" : {"must_not" : {"bool" : {"should" : {"field" : {"name" : "?"}}}}}} |
Near | findByStoreNear | Not Supported Yet ! |
True | findByAvailableTrue | {"bool" : {"must" : {"field" : {"available" : true}}}} |
False | findByAvailableFalse | {"bool" : {"must" : {"field" : {"available" : false}}}} |
OrderBy | findByAvailableTrueOrderByNameDesc | {"sort" : [{ "name" : {"order" : "desc"} }],"bool" : {"must" : {"field" : {"available" : true}}}} |
例如,我们来按照价格区间查询,定义这样的一个方法:
public interface ItemRepository extends ElasticsearchRepository<Item,Long> {
/**
* 根据价格区间查询
* @param price1
* @param price2
* @return
*/
List<Item> findByPriceBetween(double price1, double price2);
}
然后添加一些测试数据:
@Test
public void indexList() {
List<Item> list = new ArrayList<>();
list.add(new Item(1L, "小米手机7", "手机", "小米", 3299.00, "http://image.leyou.com/13123.jpg"));
list.add(new Item(2L, "坚果手机R1", "手机", "锤子", 3699.00, "http://image.leyou.com/13123.jpg"));
list.add(new Item(3L, "华为META10", "手机", "华为", 4499.00, "http://image.leyou.com/13123.jpg"));
list.add(new Item(4L, "小米Mix2S", "手机", "小米", 4299.00, "http://image.leyou.com/13123.jpg"));
list.add(new Item(5L, "荣耀V10", "手机", "华为", 2799.00, "http://image.leyou.com/13123.jpg"));
// 接收对象集合,实现批量新增
itemRepository.saveAll(list);
}
不需要写实现类,然后我们直接去运行:
@Test
public void queryByPriceBetween(){
List<Item> list = this.itemRepository.findByPriceBetween(2000.00, 3500.00);
for (Item item : list) {
System.out.println("item = " + item);
}
}
结果:
虽然基本查询和自定义方法已经很强大了,但是如果是复杂查询(模糊、通配符、词条查询等)就显得力不从心了。此时,我们只能使用原生查询。
先看看基本玩法
@Test
public void testQuery(){
// 词条查询
MatchQueryBuilder queryBuilder = QueryBuilders.matchQuery("title", "小米");
// 执行查询
Iterable<Item> items = this.itemRepository.search(queryBuilder);
items.forEach(System.out::println);
}
Repository的search方法需要QueryBuilder参数,elasticSearch为我们提供了一个对象QueryBuilders:
QueryBuilders提供了大量的静态方法,用于生成各种不同类型的查询对象,例如:词条、模糊、通配符等QueryBuilder对象。
结果:
elasticsearch提供很多可用的查询方式,但是不够灵活。如果想玩过滤或者聚合查询等就很难了。
先来看最基本的match query:
@Test
public void testNativeQuery(){
// 构建查询条件
NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
// 添加基本的分词查询
queryBuilder.withQuery(QueryBuilders.matchQuery("title", "小米"));
// 执行搜索,获取结果
Page<Item> items = this.itemRepository.search(queryBuilder.build());
// 打印总条数
System.out.println(items.getTotalElements());
// 打印总页数
System.out.println(items.getTotalPages());
items.forEach(System.out::println);
}
NativeSearchQueryBuilder:Spring提供的一个查询条件构建器,帮助构建json格式的请求体
Page<item>
:默认是分页查询,因此返回的是一个分页的结果对象,包含属性:
结果:
利用NativeSearchQueryBuilder
可以方便的实现分页:
@Test
public void testNativeQuery(){
// 构建查询条件
NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
// 添加基本的分词查询
queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机"));
// 初始化分页参数
int page = 0;
int size = 3;
// 设置分页参数
queryBuilder.withPageable(PageRequest.of(page, size));
// 执行搜索,获取结果
Page<Item> items = this.itemRepository.search(queryBuilder.build());
// 打印总条数
System.out.println(items.getTotalElements());
// 打印总页数
System.out.println(items.getTotalPages());
// 每页大小
System.out.println(items.getSize());
// 当前页
System.out.println(items.getNumber());
items.forEach(System.out::println);
}
结果:
可以发现,Elasticsearch中的分页是从第0页开始。
排序也通用通过NativeSearchQueryBuilder
完成:
@Test
public void testSort(){
// 构建查询条件
NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
// 添加基本的分词查询
queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机"));
// 排序
queryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.DESC));
// 执行搜索,获取结果
Page<Item> items = this.itemRepository.search(queryBuilder.build());
// 打印总条数
System.out.println(items.getTotalElements());
items.forEach(System.out::println);
}
结果:
桶就是分组,比如这里我们按照品牌brand进行分组:
@Test
public void testAgg(){
NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
// 不查询任何结果
queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{""}, null));
// 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand
queryBuilder.addAggregation(
AggregationBuilders.terms("brands").field("brand"));
// 2、查询,需要把结果强转为AggregatedPage类型
AggregatedPage<Item> aggPage = (AggregatedPage<Item>) this.itemRepository.search(queryBuilder.build());
// 3、解析
// 3.1、从结果中取出名为brands的那个聚合,
// 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型
StringTerms agg = (StringTerms) aggPage.getAggregation("brands");
// 3.2、获取桶
List<StringTerms.Bucket> buckets = agg.getBuckets();
// 3.3、遍历
for (StringTerms.Bucket bucket : buckets) {
// 3.4、获取桶中的key,即品牌名称
System.out.println(bucket.getKeyAsString());
// 3.5、获取桶中的文档数量
System.out.println(bucket.getDocCount());
}
}
显示的结果:
关键API:
AggregationBuilders
:聚合的构建工厂类。所有聚合都由这个类来构建,看看他的静态方法:
AggregatedPage
:聚合查询的结果类。它是Page<T>
的子接口:
AggregatedPage
在Page
功能的基础上,拓展了与聚合相关的功能,它其实就是对聚合结果的一种封装,大家可以对照聚合结果的JSON结构来看。
而返回的结果都是Aggregation类型对象,不过根据字段类型不同,又有不同的子类表示
我们看下页面的查询的JSON结果与Java类的对照关系:
代码:
@Test
public void testSubAgg(){
NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
// 不查询任何结果
queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{""}, null));
// 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand
queryBuilder.addAggregation(
AggregationBuilders.terms("brands").field("brand")
.subAggregation(AggregationBuilders.avg("priceAvg").field("price")) // 在品牌聚合桶内进行嵌套聚合,求平均值
);
// 2、查询,需要把结果强转为AggregatedPage类型
AggregatedPage<Item> aggPage = (AggregatedPage<Item>) this.itemRepository.search(queryBuilder.build());
// 3、解析
// 3.1、从结果中取出名为brands的那个聚合,
// 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型
StringTerms agg = (StringTerms) aggPage.getAggregation("brands");
// 3.2、获取桶
List<StringTerms.Bucket> buckets = agg.getBuckets();
// 3.3、遍历
for (StringTerms.Bucket bucket : buckets) {
// 3.4、获取桶中的key,即品牌名称 3.5、获取桶中的文档数量
System.out.println(bucket.getKeyAsString() + ",共" + bucket.getDocCount() + "台");
// 3.6.获取子聚合结果:
InternalAvg avg = (InternalAvg) bucket.getAggregations().asMap().get("priceAvg");
System.out.println("平均售价:" + avg.getValue());
}
}
结果:
评论